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1. Introduction

While significant progress has been made in the last decade or so in direct simulations of
multifluid systems without phase change, numerical techniques for direct simulations of flows
with phase change have been developed more slowly. Computations of film boiling in two-
dimensional systems include Son and Dhir (1998) using a level set method, Juric and Try-
ggvason (1998) using a front tracking technique, Welch and Wilson (2000) using a volume-of-
fluid (VOF) method, and Esmaeeli and Tryggvason (2004a,b) using a front tracking technique.
Simulations of three-dimensional systems are also emerging (Esmaeeli and Tryggvason, 2004a,b;
Shin and Juric, 2002). In all of these simulations the hot surface is flat and the fluid is initially at
rest.

Although boiling of quiescent fluids in simple geometries such as film boiling over a flat surface
is often studied and sometimes encountered in practical situations, boiling more frequently takes
place where the liquid is flowing and the geometry is complex. In this paper we take a first step to
study such flows computationally by introducing a method that allows for incorporation of
complex geometries into the flow field. To test the capabilities of the method we examine film
boiling of an initially quiescent fluid on a horizontal cylinder and multiple cylinders and focus on
heat transfer rates that are sufficiently high to sustain film boiling. Boiling from hot horizontal
cylinders has many industrial applications, such as in heaters and heat exchangers. Although
under normal operating conditions (i.e., modest wall superheat) the heat transfer is mostly due to
nucleate boiling or natural convection, system failure may result in increased superheat and
transition to film boiling. This is particularly true when the working fluid is a low boiling-point
liquid such as oxygen.
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The progress made in simulating two-fluid flows, including the motion of many bubbles and
drops, over the last decade has relied nearly exclusively on the use of the so-called ‘‘one-field’’
approach where a single set of governing equations is used to represent all the different fluids that
are present. In this way, it is possible to use a single regular structured grid to resolve the motion.
Although this introduces certain challenges in representing the fluid interface accurately, as grid
lines generally do not coincide with the interface, experience has shown that the difficulties are far
outweighed by the ease of which the rest of the computations can be carried out. All numerical
simulations of boiling conducted so far have also used the one-field approach.

Currently, there is a growing interest in representing solid boundaries on regular structured
grids as is evidenced by the number of publications in this area. The available techniques can be
categorized into two main groups: (i) immersed boundary methods and (ii) cut-cell methods. In
the former, a solid boundary is treated as a different phase and is represented on a regular
structured grid in the same way as a phase boundary in one-field methods. This approach has a
long history, but its modern incarnation goes back to Goldstein et al. (1993) who simulated single-
phase flow around a solid cylinder by adding a regularized force, in an iterative way, to the
momentum equation to keep the boundary in place. Several authors have since refined this ap-
proach, but the most important contribution is due to Fadlun et al. (2000) who showed that the
velocity within a stationary rigid body represented as an immersed object on a regular grid can be
set to zero without essentially any loss of accuracy. This approach was used by Al-Rawahi and
Tryggvason (2002) for their simulations of dendrite solidification using a front tracking method.
In the cut-cell methods, a Cartesian grid is used for all cells except those which are intersected by
the boundary. The boundary cells are truncated so that they conform to the shape of the
boundary surface and property jump conditions and interface boundary conditions at the
boundary are treated as discontinuities. For a recent application of this method, see, for example,
Kirkpatrick et al. (2003).

Here we introduce a front tracking/finite difference technique for simulating boiling flows in
complex geometries. The method is similar to the one used by Esmaeeli and Tryggvason (2003,
2004a,b) to study explosive boiling in microgravity and film boiling on a horizontal flat surface
and is a modification of the one used by Al-Rawahi and Tryggvason (2002) to account for the
velocity boundary conditions on nonflat solid object. The new elements here are the implemen-
tation of a technique to specify the temperature of the embedded solid and the ability to handle
three phases, solid, liquid and vapor (as well as an improved technique to allow three-dimensional
breakup for tracked surfaces).
2. Formulation and numerical method

2.1. Mathematical formulation

Consider a domain consisting of a liquid and its vapor undergoing phase change. The material
properties of the phases are different but constant within each phase. The governing equations
describing the conservation of mass, momentum, and energy are written as one set of equations
that are valid for the entire flow field. Away from the phase boundary, the one-field equations lead
to the usual governing differential equations in each phase. At the interface, singular terms must
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be introduced such that integrating these equations over an infinitesimal volume moving with the
interface results in the proper jump conditions. Here, we assume that both the liquid and the
vapor are incompressible and the only change of volume is due to phase change at the phase
boundary. We also assume that the interface temperature Tf is the same as the saturation tem-
perature at the system pressure, i.e., Tf ¼ TsatðpsysÞ. With these assumptions, the mass and the
momentum conservation and the thermal energy balance equations in conservative form, valid for
the entire flow field, are
r � u ¼ 1
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Here, d is a two- or three-dimensional delta function which is constructed by repeated multipli-
cation of one-dimensional delta functions. x is the point at which the equation is evaluated and xf
is the position of the front. Quantities with the subscript ‘f’ are evaluated at the front. u is the
velocity, n is a unit vector normal to the phase boundary pointing toward the vapor, p is the
pressure, q is the density, l is the viscosity, g is the gravity, T is the temperature, c is the heat
capacity, k is the heat conductivity, r is the surface tension, hfg is the latent heat of evaporation,
and _q is the heat generation at the phase boundary as a result of phase change. Notice that these
equations contain implicitly the conventional jump conditions for mass, momentum, and energy
across the interface. For a more extensive discussion of this approach, see, Esmaeeli and Try-
ggvason (2004a).
2.2. Numerical method

The numerical method for the current study is similar to the one used by Esmaeeli and Try-
ggvason (2004a) to simulate film boiling on flat surfaces. Eqs. (1)–(3) are solved by a second order
space-time accurate front tracking/finite difference method on a staggered grid. The time inte-
gration proceeds in two steps using a predictor–corrector scheme. As the basic method has been
described in detail by Esmaeeli and Tryggvason (2004a), we only outline it briefly and focus on the
changes that have been made to include embedded solid boundaries. Here we discuss a first order
time integration and refer the reader to Esmaeeli and Tryggvason (2004a) for detail of the
modifications that make the scheme second order.

The vapor and the liquid region are identified by an indicator function I which is unity in the
vapor and zero in the liquid. The vapor/liquid boundary changes with time and must be recon-
structed at every time step. This is done by a technique described in Tryggvason et al. (2001)
where the indicator function is reconstructed from the front position. The fluid properties
/n � ðqn;ln; kn; cnÞ are then found by
/n ¼ /vI
n þ /lð1� InÞ; ð4Þ
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where superscript n refers to the current time. The normal velocity of the phase boundary,
un ¼ uf � n, can be found from mass and energy jump conditions (Esmaeeli and Tryggvason, 2003)
un ¼
1

2
ðul þ uvÞ � n � _qf

2hfg

1

ql

�
þ 1

qv

�
; ð5Þ
where ul and uv are the velocities of the liquid and the vapor at the phase boundary. To move the
phase boundary, we integrate dxf=dt ¼ unnf in time using a simple first-order integration method.
The new position of the interface points are given by xnþ1

f ¼ xn
f þ Dtunnf . The indicator function at

the new position Inþ1 is then computed from the new position of the front (i.e., xnþ1
f ) and the

density and the heat capacity fields at the next time step, qnþ1, cnþ1, are found. The energy
equation (3) in a semi-discretized form is
qncn
bT nþ1 � T n

Dt

 !
¼ An; ð6Þ
where A represents the right hand side of equation (3), containing the advection, the diffusion,
and the source term for the latent heat. In this equation the temperature at the next time step is
identified as bT nþ1 rather than T nþ1, since T nþ1 must be corrected inside and at the boundary of the
embedded solid in order to enforce the boundary condition for the temperature at the surface. To
account for the solid boundary, we define another indicator function S, zero inside the solid and
one in the rest of the domain, and use it to modify the temperature field
T nþ1 ¼ Twð1� SÞ þ bT nþ1S: ð7Þ
Here, S and I change smoothly from one phase to the other over about three grid blocks. Bec-
kermann et al. (1999) and Al-Rawahi and Tryggvason (2002) found that pushing the transition
zone toward the solid by using S2 (instead of S) lead to better results.

Similarly, to account for the solid region in the momentum equation and to enforce no-slip/no-
through flow condition at the solid boundary, we use S to set the velocity there equal to zero. This
results in a slight modification of the standard projection scheme. In semi-discretized form the
momentum equation is
qnþ1unþ1 � qnun

Dt
¼ �rp þB; ð8Þ
where the advection, the diffusion, the gravitational body force, and the surface tension force are
denoted by B. We then use a projection method and split the above equation into
qnþ1u		 � qnun

Dt
¼ B ð9Þ
and
qnþ1unþ1 � qnþ1u		

Dt
¼ �rp: ð10Þ
Here, u		 is a provisional velocity field which is computed from equation (9) is corrected to set the
velocity inside the solid to zero
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u	 ¼ Su		: ð11Þ
In the second step, u		 in Eq. (10) is replaced by u	 and an equation is found for the pressure by
taking the divergence of the resulting equation
r � 1

qnþ1
rp ¼ r � u	 � r � unþ1

Dt
: ð12Þ
Next, we replace r � unþ1 term in the above equation with the right-hand side of Eq. (1). The
resulting pressure equation is then solved by a multigrid solver developed by Adams (1989). The
velocity at the next time step is found from Eq. (10) by replacing rp by Srp and u		 by u	. While
in Esmaeeli and Tryggvason (2004a,b) we used a central difference method to discretize the
advection terms in the momentum and the energy equations, here, we have used a QUICK scheme
(Leonard, 1979) in order to be able to simulate flows at high Grashof number.

Interface merging and break up is an inherent characteristics of boiling flows. While the physics
of topology change is far from trivial and still a matter of ongoing studies, we allow topology
change to take place when the centroid of two opposing elements are less than two grid blocks
(2h) apart. In two dimensions, this is achieved by computing the distances between the centroids
of the elements and performing a local surgery at the interface if a distance is less than 2h. For
three dimensional systems, we use a level contour method similar to Shin and Juric (2002) and
reconstruct the phase boundary by using the contours of the indicator function. While Shin and
Juric (2002) do this reconstruction at every 100 time steps or so, we do it only when we are certain
that a topology change is going to take place. To achieve this, we look for close elements at every
100 time steps using a fast method. We divide the computational domain into several blocks using
a very coarse grid (i.e., 10–15 grid points in each direction) and store the coordinates of the
centroid of the front elements at the points of this grid. Next, we compute the distances between
the centroids of elements that have the same grid index as well as the distance between their
centroids and those of their immediate neighbors on the grid. If the distance is less than 2h, a flag
is raised to proceed with interface reconstruction. Also, contrary to Shin and Juric’s (2002) ap-
proach, in our code the front elements are always logically connected. This calls for an algorithm
to set the new connectivities between the elements after a topology change and is achieved by a
method similar to the fast search operation.
3. Results

The numerical method and the code, in the absence of solid boundaries have been validated
extensively by comparing our results with available numerical, analytical, and experimental re-
sults. These comparisons are documented in detail in Esmaeeli and Tryggvason (2004a,b, 2003).
Here, we present two new tests to check the accuracy of the method with embedded solid
boundaries. These tests examine the accuracy of the energy solver and the flow solver, respec-
tively. We then present a simulation of film boiling over a horizontal cylinder for a three-
dimensional system and a highly unsteady film boiling on multiple two-dimensional cylinders.
These examples test the full phase change algorithm and illustrates the ease in which our method
handles interface merging and break up.
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3.1. Conduction heat transfer around a heated cylinder

In this test, we solve for the temperature field in an annular region between two infinitely long
concentric cylinders. The radii of the cylinders are R1 and R2 > R1 and initially both are at T0. At
time t ¼ 0, the temperature of the inner cylinder is raised to Tw > T0. The evolution of the tem-
perature is governed by
1

a
oT
ot

¼ o2T
or2

þ 1

r
oT
or

ð13Þ
subject to the following initial and boundary conditions; T ðr; 0Þ ¼ T0, T ðR1; tÞ ¼ Tw, and
T ðR2; tÞ ¼ T0. An analytical solution to this problem can be found in a number of classic heat
transfer textbooks. See, for example, Ozisik (1980), for a transient solution, and Incropera and
DeWitt (2002), for a steady-state solution. To simulate this problem, we chose a 1 · 1 domain,
R1 ¼ 0:15, R2 ¼ 0:4, q ¼ 0:2, k ¼ 0:1, c ¼ 1, T0 ¼ 0, and Tw ¼ 1 and resolved the flow by a 322,
642, 1282, and 2562 grid. The cylinders were described by smoothed indicator functions and the
initial temperature field was assigned using the indicator functions I and S. To compute the net
heat flux we could proceed in two ways. We could find the temperature gradient at the wall of the
solid cylinder and integrate over its circumference. Since the cylinder is represented on a fixed grid
by smoothed indicator function, this required carefully approximating the temperature gradient
near the surface. While this could be done, a simpler approach was to use energy balance on a
control volume that includes the cylinder and then find the heat necessary to keep the cylinder hot
_Q ¼ o
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Z
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qcTdv þ
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A
k
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We calculated the instantaneous heat loss using the original solid indicator function S and two of
its variants S2, and S4 and the best results were obtained for S4. The net heat loss versus time using
the finest grid is shown in Fig. 1 along with the exact analytical results. The dashed line shows the
Fig. 1. Variation of nondimensional temperature gradient (at the surface of a heated cylinder) with time.
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steady-state heat loss. The relative error at steady-state for the above grid resolutions are 6.50%,
3.71%, 1.364%, and 0.64%, respectively.
3.2. Pressure-driven flow over periodic array of long parallel cylinders

To test the flow solver, we repeated the test used by Al-Rawahi and Tryggvason (2002) where
they simulated pressure-driven flow over square array of infinitely long parallel cylinders at dif-
ferent solid fractions c. For Stokes flow, Sangani and Acrivos (1982) and Drummond and Tahir
(1984) found analytically the drag force per unit length of each cylinder, F . Their expressions,
which differ slightly but give essentially the same numerical result at low solid fractions (where
they are valid), are
Fig. 2

by run

Drum
F ¼ 4plU
�
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;

respectively. Here, U is the mean fluid velocity and the average pressure gradient is related to the
drag force by F =L2 ¼ dp=dx, where L is the size of the domain. For our test, we took a 1 · 1
domain (i.e., L ¼ 1) and cylinders of radii 0:1� 0:35 with incremental radius of 0.05. Other
variables were q ¼ 1, l ¼ 1, and dp=dx ¼ 1. For these parameters the Reynolds number
Re ¼ qUD=l is Oð10�2Þ and the Stokes flow assumption can be expected to be valid. We carried
out simulations at grid resolutions of 642, 1282, and 2562 and for solid indicator functions S, S2,
and S4. Again, the best results were obtained for S4. In Fig. 2 we compare the numerical mean
velocity at the finest grid, nondimensionalized as eU ¼ Ul=F , with the analytical results. The
. Variation of nondimensional steady-state mean velocity with solid fraction. The numerical results were obtained

ning the simulations till the steady-state. The analytical results correspond to Sangani and Acrivos (1982) and

mond and Tahir (1984).
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relative error at solid fraction of 0.03 for the above grid resolutions are 10.89%, 4.83%, and 2.24%,
respectively. At this solid fraction, there are about 13, 26, and 39 points per cylinder diameter.
3.3. Film boiling on a horizontal cylinder

We now turn to the more challenging problem of film boiling on horizontal cylinders. Here, a
hot cylinder, blanketed by a thin vapor layer, is immersed in a pool of liquid. Initially, both the
liquid and the vapor are at a saturation temperature and the flow is quiescent. The gravitational
acceleration is downward and as the liquid evaporates, buoyancy results in the formation of a
vapor bubble on the top of the cylinder. At low wall superheats, bubbles are periodically released
from the phase boundary, but at higher superheats, a steady vapor jet is formed.

Film boiling is characterized by the formation and release of bubbles at the phase boundary as
a result of Rayleigh–Taylor instability. For film boiling on large flat plates, disturbances shorter
than the critical Rayleigh–Taylor wavelength kc are stable and disturbances of length equal to the
most unstable wavelength kd2 grow most rapidly. For film boiling on circular cylinders, kd2 also
depends on the cylinder diameter. This dependency has been studied using analytical models (see,
for example, Lienhard and Sun, 1970). The net result is that for constant operating conditions, the
most unstable wavelength for a cylinder kd2c is lower than kd2 for small and moderate cylinders
and asymptotes to kd2 for very large cylinders.

Experimental and analytical studies on film boiling on horizontal cylinders are relatively
plentiful. Bromley (1950) was probably the first to obtain a heat transfer coefficient for film
boiling on a horizontal cylinder. His analysis, assuming that buoyancy is balanced by viscous
forces, lead to the following expression for the Nusselt number:
NuB ¼ 0:62ðGrPr=JaÞ1=4; ð15Þ
where Nu ¼ �ðD=DT ÞoT=oyjw, Ja ¼ cvDT=hfg, Gr ¼ qvgðql � qvÞD3=l2
v and Pr ¼ lvcv=kv. Brom-

ley obtained the lead constant in the above equation from experimental data. Although Bromley
did not consider eD ¼ D=ls (D is the tube diameter and ls ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðql � qvÞg

p
is a capillary length) as

an independent parameter, he stated that his correlation would not be valid for cylinders of very
small or very large diameter. The effect of eD was included by Breen and Westwater (1962) who
conducted experiments with tubes of various sizes and proposed a new correlation
NuBW ¼ ð0:3727þ 0:2738ð1=eDÞÞðGrPr=JaÞ1=4 ð16Þ
for a relatively large range of eD. For a more detailed discussion, see, Carey (1992).
3.3.1. Simulation of a three-dimensional system

We consider a two-phase fluid with the following thermophysical properties
ql=qv ¼ 40; ll=lv ¼ 10; kl=kv ¼ 40; cl=cv ¼ 2; hfg ¼ 10 kJ=kg; r ¼ 0:1 N=m;

Tsat ¼ 500 K:
These properties are the same as those used by Shin and Juric (2002) for their film boiling sim-
ulations on a horizontal flat plate. The calculations in Fig. 3 were performed in a computational
domain of size ðWx;Wy ;WzÞ ¼ ð0:06; 0:06; 0:15Þ resolved by a 64· 64· 160 grid and a wall tem-



Fig. 3. A simulation of film boiling on a horizontal cylinder. Here ql=qv ¼ 40, ll=lv ¼ 10, kl=kv ¼ 40, cl=cv ¼ 10,

hfg ¼ 10 kJ/kg, Tsat ¼ 500 K and Tw ¼ 510 K. The domain size is 0.06 · 0.06 · 0.15 and is resolved by 64 · 64 · 160 grid

We include a second interface near the top of the domain through which the raising bubbles break.
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perature of Tw ¼ 510 K. The first frame shows the initial setup where a heated cylinder of diameter
0.016 is placed midway between the x ¼ 0 and x ¼ 0:06 planes. The initial phase boundary is a
concentric cylinder of radius
rðyÞ ¼ r0 þ � cosð2pNy=WyÞ; ð17Þ
where r0 ¼ 0:0112, � ¼ �7:5� 10�4, and N ¼ 1. This perturbation results in a symmetric wave
with maximum amplitude in the middle of the cylinder. Periodic boundary conditions are imposed
on the horizontal direction, no-through-flow boundary conditions are imposed on the lower
boundary, and all the gradients set to zero at the upper boundary to allow for volume expansion
as a result of evaporation. We also include another vapor layer on top of the liquid layer to allow
rising bubbles (or steady jets) to break through. The remaining frames of the figure show the
evolution of the phase boundary. Since buoyancy pulls the vapor film upward, the upper half
portion of the film starts to thicken while the lower half portion of it becomes thinner. The hot
cylinder wall, however, prevents the lower half from becoming too thin and film settles to an
equilibrium thickness. As the top portion of the phase boundary grows larger, a bubble starts to
from and eventually is pinched off. As soon as the bubble breaks up, surface tension pulls the
interface back and the process repeats itself (frames 4–6). The coalescence of the bubble with the
upper surface creates capillary waves (frames 5–6) which eventually die off.
3.3.2. A grid resolution test

To test the convergence of the method under grid refinement, we pick a two-dimensional system
of size 0.08· 0.16 and resolve it by 128 · 256, 256 · 512, and 512 · 1024 grids. Here, the parameters
are the same as in Fig. 3 except ql=qv ¼ 100 and Tw ¼ 520 K. The top frames of Fig. 4 compares
the interfaces at at an early and a late time. The agreement between the interfaces at the two finest
grids are excellent and the overall agreement between the interfaces at other grids are good. The
bottom frame shows the Nusselt number (i.e., nondimensional wall heat flux) for these runs. It is
obvious that the heat fluxes at the two finest grids are very close.
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Fig. 4. A grid resolution test for film boiling on a horizontal cylinder. The top frames show the phase boundaries at

t ¼ 2:14 and 7:50, respectively, and the bottom frame shows the Nusselt number (i.e., nondimensional wall heat flux)

versus time.
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Here, steady-state Nu ¼ 8:63 for the finest grid and Bromley’s and Breen and Westwater’s
correlations predict NuB ¼ 7:45 and NuBW ¼ 5:58, respectively. The difference between the
experimental correlation and the numerical prediction is––we believe––primarily due to differ-
ences between interface evolution in a two-dimensional system and a fully three-dimensional one
(assuming, of course, that the correlations are reasonably accurate). In three dimensions, bubbles
are released along the length of the tube with spacing that is mostly determined by surface tension.
For a two-dimensional system, however, there is only one cylindrical bubble and the effect of
surface tension is much smaller. In the limit of very small surface tension, we expect the vapor to
leave as a thin jet from the top of the cylinder (although the possibility of multiple jets also exists)
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and for high surface tension we expect the cylindrical liquid/vapor phase boundary to grow into
an elliptical shape with the solid cylinder near its lower end. The shape of the jet in the low surface
tension limit is likely to be determined by parameters other than surface tension and we would,
therefore, expect that the vapor removal in two dimensions, unlike three dimensions, to be
essentially independent of surface tension.
3.3.3. Effect of the wall superheat
The observed periodic bubble pinch off in Fig. 3 is determined to a large extent by the mag-

nitude of the wall superheat. Experimental studies show that as the wall superheat increases, the
frequency of bubble formation and the bubble size increase. Once the diameter of the vapor plume
becomes sufficiently thick, the plume may not readily break up and eventually a vapor jet is
formed. The wall heat flux increases with an increase in the wall superheat which translates to a
reduction of the Nusselt number with an increase in the Jacob number. For both laminar and
turbulent film boiling on horizontal cylinders, most of the correlations predict that Nu  Ja�1=4

(Capone and Park, 1970).
To explore the variations of the wall heat flux with changes in the wall superheat, we have

performed a few simulations for two-dimensional systems at several different wall superheats
corresponding to 0:04276 Ja6 2:14. For this study, we consider a fluid with the following ther-
mophysical properties
ql=qv ¼ 4:78; ll=lv ¼ 2:59; kl=kv ¼ 3:55; cl=cv ¼ 0:55; Pr ¼ 4:2:
Other parameters are Gr ¼ 1680, Ja ¼ 0:0426, and eD ¼ 1:55. Except for the Grashof number, the
above thermophysical properties are close to those of saturated water at psat ¼ 169 bar. The lower
Grashof number implies a more viscous fluid or an acceleration higher than the normal gravi-
tational acceleration (such as that in a rocket engine). However, it reduces the computational cost
by reducing the grid resolution requirement (Esmaeeli and Tryggvason, 2004b). We used a 1.5 · 3
domain for Ja6 0:0854 and a 1.5 · 4 domain for Ja > 0:085 to accommodate the faster vapor
generation. The grid resolution was 192 · 384 and 192 · 512, respectively. In Fig. 5 we plot hNui
versus Ja for these runs along with Breen and Westwater’s correlation. Here, hNuðtÞi ¼
1=2p

R 2p
0

Nuðh; tÞdh is the space-averaged Nusselt number, averaged over the surface area of the

cylinder, and hNui ¼ 1=Dt
R te
ti
hNuðtÞidt. ti is the beginning of the quasi-steady-state and te is the

endtime of the simulation. hNui for the first two runs was calculated using the above expressions,
but since hNui remained constant after the jet formation, hNui is simply equal to hNui at the
steady-state. At low Jacob numbers, the rate of decrease of hNui is fast but it saturates as the
Jacob number is increased. While the numerical results and the predictions by the correlation are
different, they both show a similar trend.
3.4. A more complex example

To show the strength of our method in handling cases where the phase boundary is highly
convoluted, we have simulated film boiling over multiple cylinders at a high wall heat flux. Here,
the thermophysical properties are the same as in Section (3.3.3) except for Gr ¼ 67:2 and
Ja ¼ 1:06. The computational domain is 2.8 · 5.6 and is resolved by a 128· 256 grid. Fig. 6 shows



Fig. 6. Evolution of a highly unsteady liquid/vapor phase boundary during film boiling on multiple horizontal cyl-

inders. Here, the thermophysical parameters are the same as in Fig. 5 except Gr ¼ 67:2 and Ja ¼ 1:06. The figure shows
the phase boundary along with the temperature contours and the velocity vectors (at every sixth grid point). The frames

proceed from the left to the right.

Fig. 5. Variation of hNui with Ja. Here, Gr ¼ 1680, eD ¼ 1:55, and other thermophysical properties are ql=qv ¼ 4:78,
ll=lv ¼ 2:59, kl=kv ¼ 3:553, cl=cv ¼ 0:546 and Pr ¼ 4:2.
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the temperature contours and a vector plot of the velocity field (plotted at every sixth grid point)
at three selected times. Initially each phase boundary grows similarly to that of an isolated cyl-
inder. However, as the phase boundaries expand more, they start to interact and eventually
coalesce. This results in the formation of the large vapor region seen in frame (2) which completely
encompasses the cylinders. As the vapor plumes grew larger, they coalesce with the top interface.
At this point, most of the domain is occupied with vapor except for a small region near the lower
wall and two isolated islands of liquid in the middle of the domain (not shown here). The liquid
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islands finally disappear with further evaporation (frame 3). The figure shows a gradual decrease
in the magnitude of the velocity field as the process continues. This is due to the fact that the
temperature gradient in the vapor, which drives the flow, starts to diminish as the vapor layer gets
thicker. This can be seen clearly by inspection of the temperature field. Overall, this simulation
shows the feasibility of studying complex problems where frequent topology changes necessitate
the use of a robust and easy to implement numerical technique.
4. Conclusion

We have developed a front tracking method for computations of boiling in complex geometries.
The method is well-suited for incorporating arbitrary solid boundaries into the flow field in
Cartesian grid computations. We conducted two validation tests and a grid resolution study to
test the performance of the energy equation and the momentum solver against available exact
solutions and to show the convergence of the method under grid refinement. We also presented
film boiling simulations on a horizontal cylinder and multiple cylinders which test the full phase
change algorithm. While these tests show that the method is robust and converges as the grid is
refined, they also show that it demands a relatively high grid resolution. This calls for imple-
mentation of an adaptive mesh refinement, similar to the one used by Agresar et al. (1998), where
the grid points are clustered near the solid. Despite this shortcoming, we believe that these
computations show the feasibility of simulating film boiling in complex geometries.
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